Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 31(2): 2394-2407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066277

RESUMO

Achieving efficient and stable photocatalytic degradation of xylene hinges on the advancement of photocatalytic materials with outstanding visible light activity. This low-carbon strategy serves as a promising solution to combat air pollution effectively. In this study, we synthesized a Z-scheme heterojunction Ag@CuO/UiO-66-NH2 nanocomposite by hydrothermal method to investigate its photodegradation properties for xylene gas under visible light conditions. XRD, XPS, SEM, FTIR, and UV-vis analyses were employed to confirm the presence of the Z-scheme heterojunction. The CuO/UiO-66-NH2 (CuU-2) composite has high photocatalytic activity, which is 2.37 times that of the original UiO-66-NH2. The incorporation of Z-scheme heterojunction facilitates efficient charge transfer and separation, leading to a substantial enhancement in photocatalytic activity. The Ag@CuO/UiO-66-NH2 (Ag-1@CuU) composite has the highest photocatalytic activity with a degradation efficiency of 84.12%, which is 3.36 times and 1.41 times that of UiO-66-NH2 and CuO/UiO-66-NH2, respectively. The silver cocatalyst improves the absorption capacity of the composite material to visible light, makes the ultraviolet visible absorption edge redshift, and significantly improves the photocatalytic performance. This study introduces a novel approach for xylene gas degradation and offers a versatile strategy for designing and synthesizing metal-organic framework (MOF)-based photocatalysts with exceptional performance.


Assuntos
Poluição do Ar , Estruturas Metalorgânicas , Nanocompostos , Ácidos Ftálicos , Xilenos
3.
J Photochem Photobiol B ; 241: 112673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889195

RESUMO

Transparent plastic films with poor light transmittance seriously affect the mass composition of visible light in many greenhouses, which leads to the reduction of photosynthesis in vegetable crops. Understanding the regulatory mechanisms of monochromatic light in the vegetative and reproductive growth of vegetable crops is of great importance for the application of light-emitting diodes (LEDs) in the greenhouse. In this study, three monochromatic light treatments (red-, green- and blue-light) were simulated by using LEDs to explore light quality-dependent regulation from the stage of seedling to flowering in pepper (Capsicum annuum L.). The results showed that light quality-dependent regulation guides the growth and morphogenesis in pepper plants. Red- and blue-light played opposite roles in determining the plant height, stomatal density, axillary bud growth, photosynthetic characteristics, flowering time and hormone metabolism, while green light treatment resulted in taller plants and fewer branches, which was similar to the red-light treatment. The weighted correlation network analysis (WGCNA) based on mRNA-seq results revealed that the two modules named "MEred" and "MEmidnightblue" were positively correlated with red- and blue-light treatment, respectively, exhibiting high correlations with the traits such as plant hormone content, branching and flowering. Moreover, our results suggest that the light response factor ELONGATED HYPOCOTYL 5 (HY5) is essential for blue light-induced plant growth and development by regulating photosynthesis in pepper plants. Hence, this study uncovers crucial molecular mechanisms of how light quality determines the morphogenesis, architecture, and flowering in pepper plants, thus providing a basic concept of manipulating light quality to regulate pepper plant growth and flowering under greenhouse conditions.


Assuntos
Capsicum , Capsicum/genética , Luz , Fotossíntese , Morfogênese
4.
Hortic Res ; 10(2): uhac256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778181

RESUMO

Thioredoxins (TRXs) are ubiquitous oxidoreductases and present as a multigenic family. TRXs determine the thiol redox balance, which is crucial for plants in the response to cold stress. However, limited knowledge is available about the role of TRXs in watermelon (Citrullus lanatus), which is highly sensitive to chilling stress in agricultural practice. Here, we identified 18 genes encoding 14 typical and 4 atypical TRXs from the watermelon genome, and found that ClTRX h2 localized at the plasma membrane was largely induced by chilling. Virus-induced gene silencing of ClTRX h2 resulted in watermelon plants that were more sensitive to chilling stress. We further found that ClTRX h2 physically interacted with mitogen-activated protein kinase kinase 5 (ClMPKK5), which was confirmed to phosphorylate and activate ClMPK3 in vitro, and the activation of ClMPK3 by ClMPKK5 was blocked by a point mutation of the Cys-229 residue to Ser in ClMPKK5. Additionally, ClTRX h2 inhibited the chilling-induced activation of ClMPK3, suggesting that the ClMPKK5-ClMPK3 cascade is regulated in a redox-dependent manner. We showed that ClMPK3-silenced plants had increased tolerance to chilling, as well as enhanced transcript abundances of the C-repeat/DREB binding factor (ClCBF) and cold-responsive (ClCOR) genes. Taken together, our results indicate that redox status mediated by ClTRX h2 inhibits ClMPK3 phosphorylation through the interaction between ClTRX h2 and ClMPKK5, which subsequently regulates the CBF-COR signaling pathway when submitted to chilling stress. Hence, our results provide a link between thiol redox balance and MAPK cascade signaling, revealing a conceptual framework to understand how TRX regulates chilling stress tolerance in watermelon.

5.
J Integr Plant Biol ; 64(12): 2385-2395, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149781

RESUMO

DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Transporte/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , DNA/metabolismo
6.
Genome ; 65(11): 537-545, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944282

RESUMO

The 12-oxophytoeienoic acid reductase (OPR) is a kind of enzyme in the octadecanoid biosynthesis pathway that determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR-encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements, and chromosomal locations. The results showed that the seven CaOPR homologues could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt, and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.


Assuntos
Arabidopsis , Capsicum , Capsicum/genética , Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Frutas/genética , Frutas/metabolismo , Filogenia , Arabidopsis/genética , Plantas
7.
Plants (Basel) ; 11(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406939

RESUMO

As a result of energy consumption and human activities, a large amount of carbon dioxide emissions has led to global warming, which seriously affects the growth and development of plants. Vegetables are an indispensable part of people's diet. In the plant kingdom, a variety of vegetables are highly sensitive to climate change. For them, an increase of just a few degrees above their optimum temperature threshold can result in a loss of yield and quality. Emerging strategies such as practice management and breeding varieties in response to above-optimal temperatures are critical for abiotic stress resistance of vegetable crops. In this study, the function and application of multiple strategies, including breeding improvement, epigenetic modification directed generation of alleles, gene editing techniques, and accumulation of mutations in multigenerational adaptation to abiotic stress, were discussed in vegetable crops. It is believed to be meaningful for plants to build plasticity under high temperature stress, thus generating more genetic structures for heat resistant traits in vegetable products.

8.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216359

RESUMO

Leaves, considered as the 'source' organs, depend on the development stages because of the age-dependent photosynthesis and assimilation of leaves. However, the molecular mechanisms of age-dependent limitations on the function of leaves are seldom reported. In the present study, the photosynthesis-related characteristics and photoassimilates were investigated in grape leaves at six different age groups (Ll to L6) at micro-morphological, biochemical, and molecular levels. These results showed lower expression levels of genes associated with stomatal development, and chl biosynthesis resulted in fewer stomata and lowered chlorophyll a/b contents in L1 when compared to L3 and L5. The DEGs between L5 and L3/L1 were largely distributed at stomatal movement, carbon fixation, and sucrose and starch metabolism pathways, such as STOMATAL ANION CHANNEL PROTEIN 1 (SLAC1), FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE (FBA1), SUCROSE-PHOSPHATE SYNTHASE (SPP1), and SUCROSE-PHOSPHATE PHOSPHATASE (SPS2, 4). These genes could be major candidate genes leading to increased photosynthesis capacity and sugar content in L5. The accumulation of starch grains in the chloroplast and palisade tissue of L5 and higher transcription levels of genes related to starch biosynthesis in L5 further supported the high ability of L5 to produce photoassimilates. Hence, our results provide insights for understanding different photosynthetic functions in age-dependent leaves in grape plants at the molecular level.


Assuntos
Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Açúcares/metabolismo , Transcrição Gênica/genética , Vitis/genética , Vitis/metabolismo , Metabolismo dos Carboidratos/genética , Carboidratos/genética , Clorofila/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo
9.
Natl Sci Rev ; 8(1): nwaa149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34691553

RESUMO

Salt stress is a major environmental factor limiting plant growth and productivity. We recently discovered an important new salt tolerance pathway, where the cell wall leucine-rich repeat extensins LRX3/4/5, the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23 and receptor-like kinase FERONIA (FER) function as a module to simultaneously regulate plant growth and salt stress tolerance. However, the intracellular signaling pathways that are regulated by the extracellular LRX3/4/5-RALF22/23-FER module to coordinate growth, cell wall integrity and salt stress responses are still unknown. Here, we report that the LRX3/4/5-RALF22/23-FER module negatively regulates the levels of jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). Blocking JA pathway rescues the dwarf phenotype of the lrx345 and fer-4 mutants, while disruption of ABA biosynthesis suppresses the salt-hypersensitivity of these mutants. Many salt stress-responsive genes display abnormal expression patterns in the lrx345 and fer-4 mutants, as well as in the wild type plants treated with epigallocatechin gallate (EGCG), an inhibitor of pectin methylesterases, suggesting cell wall integrity as a critical factor that determines the expression pattern of stress-responsive genes. Production of reactive oxygen species (ROS) is constitutively increased in the lrx345 and fer-4 mutants, and inhibition of ROS accumulation suppresses the salt-hypersensitivity of these mutants. Together, our work provides strong evidence that the LRX3/4/5-RALF22/23-FER module controls plant growth and salt stress responses by regulating hormonal homeostasis and ROS accumulation.

10.
Plant J ; 108(2): 347-357, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314526

RESUMO

DNA methylation is an important epigenetic mark. In plants, de novo DNA methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. Researchers have previously inferred that a flowering regulator, MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE, is involved in non-CG methylation at several RdDM targets, suggesting a role of FVE in RdDM. However, whether and how FVE affects RdDM genome-wide is not known. Here, we report that FVE is required for DNA methylation at thousands of RdDM target regions. In addition, dysfunction of FVE significantly reduces 24-nucleotide siRNA accumulation that is dependent on factors downstream in the RdDM pathway. By using chromatin immunoprecipitation and sequencing (ChIP-seq), we show that FVE directly binds to FVE-dependent 24-nucleotide siRNA cluster regions. Our results also indicate that FVE may function in RdDM by physically interacting with RDM15, a downstream factor in the RdDM pathway. Our study has therefore revealed that FVE, by associating with RDM15, directly regulates DNA methylation and siRNA accumulation at a subset of RdDM targets.


Assuntos
Proteínas de Arabidopsis/genética , Metilação de DNA , RNA de Plantas/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/genética , Fatores de Transcrição/metabolismo
11.
Biochem Soc Trans ; 49(3): 1479-1487, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34060587

RESUMO

As a subgroup of horticultural crops, vegetable food is a kind of indispensable energy source for human beings, providing necessary nutritional components including vitamins, carbohydrates, dietary fiber, and active substances such as carotenoids and flavonoids. The developmental process of vegetable crops is not only regulated by environmental stimulations, but also manipulated by both genetic and epigenetic modifications. Epigenetic modifications are composed by several regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Among these modifications, DNA methylation functions in multiple biological pathways ranging from fundamental development to environmental stimulations by mediating transcriptomic alterations, resulting in the activation or silencing of target genes. In recent years, intensive studies have revealed that DNA methylation is essential to fruit development and ripening, indicating that the epigenome of fruit crops could be dynamically modified according to the specific requirements in the commercial production. Firstly, this review will present the mechanisms of DNA methylation, and update the understanding on active DNA demethylation in Arabidopsis thaliana. Secondly, this review will summarize the recent progress on the function of DNA methylation in regulating fruit ripening. Moreover, the possible functions of DNA methylation on controlling the expansion of edible organs, senescence of leafy vegetables, and anthocyanin pigmentation in several important vegetable crops will be discussed. Finally, this review will highlight the intractable issues that need to be resolved in the application of epigenome in vegetable crops, and provide perspectives for the potential challenges in the further studies.


Assuntos
Arabidopsis/genética , Produtos Agrícolas/genética , Metilação de DNA , Frutas/genética , Verduras/genética , Agricultura/métodos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Epigênese Genética , Indústria Alimentícia/métodos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Verduras/crescimento & desenvolvimento , Verduras/metabolismo
12.
Genes (Basel) ; 12(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918349

RESUMO

As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsisthaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.


Assuntos
Actinas/genética , Actinas/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Mutação com Perda de Função , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Técnicas do Sistema de Duplo-Híbrido
13.
Hortic Res ; 8(1): 85, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33790255

RESUMO

The conserved histone variant H2A.Z is essential for transcriptional regulation; defense responses; and various biological processes in plants, such as growth, development, and flowering. However, little is known about how H2A.Z affects the developmental process and ripening of tomato fruits. Here, we utilized the CRISPR/Cas9 gene-editing system to generate a sl_hta9 sl_hta11 double-mutant, designated sl_h2a.z, and found that these two mutations led to a significant reduction in the fresh weight of tomato fruits. Subsequent messenger RNA (mRNA)-seq results showed that dysfunction of Sl_H2A.Z has profound effects on the reprogramming of genome-wide gene expression at different developmental stages of tomato fruits, indicating a ripening-dependent correlation between Sl_H2A.Z and gene expression regulation in tomato fruits. In addition, the expression of three genes, SlPSY1, SlPDS, and SlVDE, encoding the key enzymes in the biosynthesis pathway of carotenoids, was significantly upregulated in the later ripening stages, which was consistent with the increased contents of carotenoids in sl_h2a.z double-mutant fruits. Overall, our study reveals a role of Sl_H2A.Z in the regulation of carotenoids and provides a resource for the study of Sl_H2A.Z-dependent gene expression regulation. Hence, our results provide a link between epigenetic regulation via histone variants and fruit development, suggesting a conceptual framework to understand how histone variants regulate tomato fruit quality.

14.
J Integr Plant Biol ; 63(4): 772-786, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615694

RESUMO

Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression. The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at 1 000s of genomic regions in Arabidopsis. How ROS1 is regulated and targeted to specific genomic regions is not well understood. Here, we report the discovery of an Arabidopsis protein complex that contains ROS1, regulates ROS1 gene expression, and likely targets the ROS1 protein to specific genomic regions. ROS1 physically interacts with a WD40 domain protein (RWD40), which in turn interacts with a methyl-DNA binding protein (RMB1) as well as with a zinc finger and homeobox domain protein (RHD1). RMB1 binds to DNA that is methylated in any sequence context, and this binding is necessary for its function in vivo. Loss-of-function mutations in RWD40, RMB1, or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1. Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter, plants mutated in RWD40, RMB1, or RHD1 show increased ROS1 expression. Importantly, ROS1 binding to the ROS1 promoter requires RWD40, RMB1, and RHD1, suggesting that this complex dictates ROS1 targeting to this locus. Our results demonstrate that ROS1 forms a protein complex with RWD40, RMB1, and RHD1, and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Desmetilação do DNA , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Proteínas Proto-Oncogênicas/genética
15.
Stress Biol ; 1(1): 9, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37676567

RESUMO

Maintenance of cell wall integrity is of great importance not only for plant growth and development, but also for the adaptation of plants to adverse environments. However, how the cell wall integrity is modulated under salt stress is still poorly understood. Here, we report that a nuclear-localized Agenet domain-containing protein SWO1 (SWOLLEN 1) is required for the maintenance of cell wall integrity in Arabidopsis under salt stress. Mutation in SWO1 gene results in swollen root tips, disordered root cell morphology, and root elongation inhibition under salt stress. The swo1 mutant accumulates less cellulose and pectin but more lignin under high salinity. RNA-seq and ChIP-seq assays reveal that SWO1 binds to the promoter of several cell wall-related genes and regulates their expression under saline conditions. Further study indicates that SWO1 interacts with importin ɑ IMPA1 and IMPA2, which are required for the import of nuclear-localized proteins. The impa1 impa2 double mutant also exhibits root growth inhibition under salt stress and mutations of these two genes aggravate the salt-hypersensitive phenotype of the swo1 mutant. Taken together, our data suggest that SWO1 functions together with importin ɑ to regulate the expression of cell wall-related genes, which enables plants to maintain cell wall integrity under high salinity.

16.
Front Genet ; 11: 591806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250924

RESUMO

Abiotic stress adversely inhibits the growth and development of plants, by changing the expression of multiple genes. Circular RNAs (circRNAs), as a class of non-coding RNAs, function in transcriptional and posttranscriptional regulation. Yet, the involvement of circRNAs in abiotic stress response is rarely reported. In this study, the participation and function of circRNAs in low-temperature (LT)-induced stress response were investigated in tomato leaves. We generated genome-wide profiles of circRNAs and mRNAs in tomato leaves grown at 25°C room temperature (RT) and 12°C LT. Our results show that 1,830 circRNAs were identified in tomato leaves in both RT and LT treatments, among which 1,759 were differentially induced by the LT treatment. We find that the identified circRNAs are mainly located at exons of genes, but less distributed at introns of genes or intergenic regions. Our results suggest that there are 383 differentially expressed circRNAs predicted to function as putative sponges of 266 miRNAs to target 4,476 mRNAs in total. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis assays indicate that multiple pathways were enriched in both differentially expressed genes induced by LT and parental genes of differentially expressed circRNAs induced by LT, revealing the key functions of circRNAs and the corresponding targeted genes in response to LT stress. Our results suggest that circRNAs may be involved in regulating metabolism (i.e., carbohydrate, amino acid, lipid, and energy), signal transduction, and environmental adaptation-related pathways and that these circRNAs were predicted to regulate the expression of transcription factors, genes in signal transduction pathways, and genes related to the Ca2+ channel through targeting the corresponding proteins, such as WRKY, NAC, cytochrome P450, and calmodulin binding protein. Taken together, our study uncovers that multiple circRNAs are isolated and differently regulated in response to LT stress and provides the resource and potential networks of circRNA-miRNA-mRNA under LT stress for further investigations in tomato leaves.

17.
Sensors (Basel) ; 20(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991729

RESUMO

The Multi-constellation Global Navigation Satellite System (Multi-GNSS) has become the standard implementation of high accuracy positioning and navigation applications. It is well known that the noise of code and phase measurements depend on GNSS constellation. Then, Helmert variance component estimation (HVCE) is usually used to adjust the contributions of different GNSS constellations by determining their individual variances of unit weight. However, HVCE requires a heavy computation load. In this study, the HVCE posterior weighting was employed to carry out a kinematic relative Multi-GNSS positioning experiment with six short-baselines from day of year (DoY) 171 to 200 in 2019. As a result, the HVCE posterior weighting strategy improved Multi-GNSS positioning accuracy by 20.5%, 15.7% and 13.2% in east-north-up (ENU) components, compared to an elevation-dependent (ED) priori weighting strategy. We observed that the weight proportion of both code and phase observations for each GNSS constellation were consistent during the entire 30 days, which indicates that the weight proportions of both code and phase observations are stable over a long period of time. It was also found that the quality of a phase observation is almost equivalent in each baseline and GNSS constellation, whereas that of a code observation is different. In order to reduce the time consumption of the HVCE method without sacrificing positioning accuracy, the stable variances of unit weights of both phase and code observations obtained over 30 days were averaged and then frozen as a priori information in the positioning experiment. The result demonstrated similar ENU improvements of 20.0%, 14.1% and 11.1% with respect to the ED method but saving 88% of the computation time of the HCVE strategy. Our study concludes with the observations that the frozen variances of unit weight (FVUW) could be applied to the positioning experiment for the next 30 days, that is, from DoY 201 to 230 in 2019, improving the positioning ENU accuracy of the ED method by 18.1%, 13.2% and 10.6%, indicating the effectiveness of the FVUW.

18.
Proc Natl Acad Sci U S A ; 116(33): 16641-16650, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31363048

RESUMO

Active DNA demethylation is critical for controlling the DNA methylomes in plants and mammals. However, little is known about how DNA demethylases are recruited to target loci, and the involvement of chromatin marks in this process. Here, we identify 2 components of the SWR1 chromatin-remodeling complex, PIE1 and ARP6, as required for ROS1-mediated DNA demethylation, and discover 2 SWR1-associated bromodomain-containing proteins, AtMBD9 and nuclear protein X1 (NPX1). AtMBD9 and NPX1 recognize histone acetylation marks established by increased DNA methylation 1 (IDM1), a known regulator of DNA demethylation, redundantly facilitating H2A.Z deposition at IDM1 target loci. We show that at some genomic regions, H2A.Z and DNA methylation marks coexist, and H2A.Z physically interacts with ROS1 to regulate DNA demethylation and antisilencing. Our results unveil a mechanism through which DNA demethylases can be recruited to specific target loci exhibiting particular histone marks, providing a conceptual framework to understand how chromatin marks regulate DNA demethylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Desmetilação do DNA , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Acetilação , Cromatina/metabolismo , Inativação Gênica , Modelos Biológicos , Mutação/genética , Ligação Proteica , Subunidades Proteicas/metabolismo
19.
J Integr Plant Biol ; 61(12): 1224-1242, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30652405

RESUMO

DNA methylation confers epigenetic regulation on gene expression and thereby on various biological processes. Tomato has emerged as an excellent system to study the function of DNA methylation in plant development. To date, regulation and function of DNA methylation maintenance remains unclear in tomato plants. Here, we report the critical function of tomato (Solanum lycopersicum) Methyltransferase 1 (SlMET1) in plant development and DNA methylome and transcriptome regulation. Using CRISPR-Cas9 gene editing, we generated slmet1 mutants and observed severe developmental defects with a frame-shift mutation, including small and curly leaves, defective inflorescence, and parthenocarpy. In leaf tissues, mutations in SlMET1 caused CG hypomethylation and CHH hypermethylation on a whole-genome scale, leading to a disturbed transcriptome including ectopic expression of many RIN target genes such as ACC2 in leaf tissues, which are normally expressed in fruits. Neither the CG hypomethylation nor CHH hypermethylation in the slmet1 mutants is related to tissue culture. Meanwhile, tissue culture induces non-CG hypomethylation, which occurs more frequently at gene regions than at TE regions. Our results depict SlMET1- and tissue culture-dependent tomato DNA methylomes, and that SlMET1 is required for maintaining a normal transcriptome and normal development of tomato.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Transcriptoma/genética , Sequência de Bases , Ilhas de CpG/genética , Meio Ambiente , Edição de Genes , Pleiotropia Genética , Genoma de Planta , Solanum lycopersicum/enzimologia , Mutação/genética , Fenótipo , Transcrição Gênica
20.
Nucleic Acids Res ; 45(1): 181-197, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27672037

RESUMO

Epigenetic regulation is important for organismal development and response to the environment. Alteration in epigenetic status has been known mostly from the perspective of enzymatic actions of DNA methylation and/or histone modifications. In a genetic screen for cellular factors involved in preventing epigenetic silencing, we isolated an Arabidopsis mutant defective in SAC3B, a component of the conserved TREX-2 complex that couples mRNA transcription with nuleo-cytoplasmic export. Arabidopsis SAC3B dysfunction causes gene silencing at transgenic and endogenous loci, accompanied by elevation in the repressive histone mark H3K9me2 and by reduction in RNA polymerase Pol II occupancy. SAC3B dysfunction does not alter promoter DNA methylation level of the transgene d35S::LUC, although the DNA demethylase ROS1 is also required for d35S::LUC anti-silencing. THP1 and NUA were identified as SAC3B-associated proteins whose mutations also caused d35S::LUC silencing. RNA-DNA hybrid exists at the repressed loci but is unrelated to gene suppression by the sac3b mutation. Genome-wide analyses demonstrated minor but clear involvement of SAC3B in regulating siRNAs and DNA methylation, particularly at a group of TAS and TAS-like loci. Together our results revealed not only a critical role of mRNA-export factors in transcriptional anti-silencing but also the contribution of SAC3B in shaping plant epigenetic landscapes.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Metilação de DNA , Genes Reporter , Loci Gênicos , Luciferases/genética , Luciferases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Geneticamente Modificadas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...